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material is connected with the tensors pi" and qiR the relationship (4.4), where 

poia = aujax,'I,i=,i 
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ON THE REALIZATION OF HOLONOMIC CONSTRAINTS* 

V.V. KOZLOV and A.I. NEISHTADT 

The idea of realizing holonomic constraints by means of elastic forces 
was proposed by Lecornu, Klein and Prandtl /l/ when dealing with the 
paradox of dry friction discovered by Painleve. The general theorem on 
the realization of holonomic constraints with the help of elastic forces 
directed towards the configurational manifold of a constrained system 
was proposed by Courant and was proved in /2/. The generalization of 
Courant's theorem was considered in /3-5/ by studying the passage to the 
limit in the case when the velocity of the system at the initial instant 
is transverse to the manifold defined by the constraint equations. In 
/2-5/ the assumption that the system in question in conservative is used 
to a considerable degree. 

The main results of the present paper is the fact that the theorem on the passage to the 
limit holds without assuming that the generalized forces are potential in character. The 
elastic forces acting on the "free" system have, in general, no limit when the coefficient of 
elasticity tends to infinity. However, as is shown below, after suitable regularization these 
forces tend precisely to the reactions of the system with constraints. 

1. Initial equations. Let a natural mechanical system be given in R*=(r), constrained 
by nl ideal holonomic constraints. Let E (r’. r) be the kinetic energy of the system without 
constraints and let F (r'. r) be the generalized active force. The equations of motion will 
have the form 

(aE/ar’). - awar = F + R (1.i) 

where R is the reaction force of the constraints. The constraints define in Rn a manifold M 
of dimensions n,= n-n,, over which the system must move. In accordance with the axiom of 
the ideality of the constraints, the l-form Rdr vanishes on the vectors tangent to M. 

We shall consider the problem of realizing the constraints using the force with potential 
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NW, where N is a large positive parameter and the function W(r) takes its minimum value on 
the manifold of constraints. The equations of motion of a constraint-free system have the 
form 

(ae:ar')' - dEIDr = F - ,vaw/ar (1.2) 

2. Formutation of the result. Let r,(t). O<t<1, be the motion of the system with con- 
straints and R, (0 the force of reaction along this motion. 
conditions hold: 

We assume that the following 

10. The manifold of constraints is four times continuously differentiable and the func- 
tions W and E are, respectively, thrice and twice continuously differentiable in some neighbour- 
hood C of the trajectory of motion T_. 
G' of the trajectory of motion (r_,r,') 

in the configurational space Rn. In some neighbourhood 
in the phase space Ran the function F is twice con- 

tinuously differentiable. 
20. The function W is non-negative and vanishes on M. The second differential of W is 

positive definite at every point M of any subspace of dimensions n,, transverse to the 
manifold M. 

Let the manifold M be defined by the equations /k(r)= O(k= I,..., +) and let the dif- 
ferentials dtb be linearly independent at points belonging to M. Then we can take as the 
function W, the function A' Xcdka, for example, where ck are positive constants. 

Let 'N (t) be the motion of the constraint-free system with initial conditions rN (O) = 
', (O), TN' (0) = r_' (0). 

Theorem. For sufficiently large N and ogt<i the motion is well-defined and the 
following relations hold: 

rN (t) = r, (t) + 0 (iv--l), rN’ (t) = r_’ (t) + 0 (N-“2) (2.1) 

When I,.* E IO, 11, we have 

along rN @). 

Note. The second estimate of (2.1) can be refined: 

r,; (t) = r_’ (t) + 0 (N-9, rl’ (t) = 0 (N-‘+ (2.3) 

where 'u' (t) is the orthogonal projection of %' @) on the tangential plane to M at the 

point r_ (0; rl' (t) = rh7. (t) - r,,’ (t) . The orthogonality is determined using the scalar product, 
specified by the quadratic form of the energy E. 

By (2.2) we have 

lim lim - 
tl, 1.4. N-m t, - tl 

N 9 (rN (t)) dt = - R, (to) 
f, 

In the general case, passages to the limit with respect to time and the parameter N are 
not interchangeable, since, as a rule, there is no limit value for the elastic force Na wlar 

as N-CO. 

In order to illustrate this, we shall consider the motion of a material point of unit 
mass over the Euclidean plane RP= (2,~). Let M be given by the equation Y = 0, and let the 
projection of the force F on to the x and y axes be equal to y and 1 respectively. We shall 
write W = yY2. Then Eqs.(1.2) will take the form z”=Y,Y”= ~-NY. Since 
we have yN (t) = [i - cm (N”v)~IN. It is clear that for fixed values of t 

YN (O) = !,N' (0) = 0, 

yN (t) = 0 (N-1). yN’ (t) = 0 (N-“1) 

but the force -NW'= -NyN= co9 (NYzt)- 1 oscillates rapidly (with frequency N"d about its 
mean value equal to force of reaction of the constraint y= 0. 
oscillations are of the order of b(N-'/*) 

After averaging over time, the 
and hence tend to zero as N-W. The x coordi- 

nate describes1 the motion along the manifold M. Since =N"=@,,v we have zN-zm = O(N-I), zN'- 
=cn '= 0 (N-l). The above example also shows that the estimates (2.1)-(2.3) cannot be improved. 

3. Proof. We can introduce in the neighbourhood of each point of the manifold M new 
coordinates z~lP, p~R"l in such a manner that M will be specified by the equation q=o 
and the quadratic form E will contain the derivatives Z' and 9' when 4=0. To simplify 
the argument we shall assume that the coordinates are introduced globally in the region C. 
Then we can assume that r are already such coordinates, while x and q are, respectively, the 
first nU and subsequent R, components of r. The equation of motion will not take the form 
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The matrices A and B are positive definite. 
We will introduce the moment 

P = aEiaq’, y = aEtas’ 

and write the equations of motion in the form 

aE 
q’=ap 9 p’= -~-.y~+Q 

aB 
x.=-J--, 

aE aw 
br’=--~----N~+” 

(3.‘) 

(3.2) 

(3.3) 

(3.4j 

Here the energy E is assumed to be expressed in terms of q,p,z, y. 

The system (3.4) is defined in the region D’c Rpl', which is an image of the region G' 
under the mapping (9, q', 5, .z')Y (q. p, Z. I/). 

the 
and 

We shall write E= qNvl and assume that 151<4. Then from (3.2)-(3.4) we obtain 

5' = N’I’A-‘p + f (5, p> 5, Y, N), P’ = --N”‘B% + g (%, p, 5, Y. N) (3.5j 

Z. = 0 (1), y' = 0 (1) 

The functions f, g and their derivatives are of order o(i). 
Let & (~9 Y, N), P, (~8 Y, N) be the solution of a system of equations corresponding to equating 
right-hand sides of the firt two equations of system (3.5) to zero. The functions &,P, 
their derivatives are quantities of the order of 0 (N-l/$). 
Let us put E= %-&V P=p-pp, and introduce the positive definite quadratic form of the 

variables S, P: 

U = ‘IIP.A-lP + ‘i&BB 

Differentiating Cl we obtain, by virtue of the equations of motion, 

dlJ/dt = 0 (N-%"~) + 0 ((I) (3.6) 

We will now estimate the motion rx(t) of the system (1.2) introduced above. We shall 
choose any TE IO,11 such that for 0<t<r the motion in question is defined and the point 
(r. r') does not leave G', while the point (q,p,z,y) constructed on it does not leave D’n{l El< 
11. Then the quantities g,P! U will be defined for this motion. At the initial instant 
(t = 0) we have S = 0 (N-'/x), P = 0 (N-‘l’). 
0 (N-I’%), P = 0 (N-l”) 

From (3.6) we find that along the motion Cr= O(N-I), S = 
and therefore 

5 = 0 (N-'/l), p = 0 (N+), q = 0 (N-l), q’ = 0 (N+) 

Using these estimates we find from (3.1) and (3.2) that when O<tQr, 

5' = aT/aY + 0 (N-I), y' = --aTids + X + h (z,g) q’ + 0 (N-1) 

The function h and its derivatives are of order 0 (1). 
Let us introduce Y= y+ h(z,y)q. We obtain 

(3.7) 

5' = aTjaY + 0 (I/N), Y’ = -aT/az + x + 0 (ii~) (3.8) 

In the above expression, I' in the arguments of T,X must be expressed in terms of 
y,s, and y replaced by Y. Neglecting in (3.8) terms or order 0(1/N), we arrive at the equation 
of motion of the system with constraints. The neglected terms are capable of displacing the 
solution, over the time s<l, only by an amount of the order of 0(1/N). The change in 
initial conditions by a quantity of the order of 0(1/N) also shifts the solution during its 
passage from y to Y by the order of O(l/N). Therefore Z,Y and hence z. differ, in the 
motion in question, from the corresponding quantities for the motion r_ by 0(1/N). Therefore, 
when 0<t<z, the estimates (2.1) and (2.3) of the theorem and subsequent notes also hold. 
By virtue of these estimates the point (rN(f),rN'(t)) appears, for UCK-r, at a positive dis- 
tance from the boundary of G' and IE(t)l<‘i~ holds. Therefore we can choose T= i. 

Let us now derive the estimate (2.2) of the theorem. Since awl&, R, are not invariant 
under the coordinate change, we shall not use the particular choice of r made above, and we 
shall assume that , = r (z, q). 

Using the estimates (2.1) already proved, we obtain 
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The subscript 
of the system with 

to zero, since the 
when 4 = q'= II" = 0 
we now obtain 

03 means that the corresponding quantity is calculated along the motion 
constraints. The last term in the expression for R-is identically equal 

condition that the expression within the parenthesis in this term vanishes 
is Lagrange's equation for motion with constraints. Using (2.1) again 

Integrating from the left and right with respect to t from tl to tl, using integration 
by parts from the right, and taking into account the fact that q'= O(Nevl), r-O'= O(1), we 
obtain the estimate (2.2) of the theorem. 
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THE ASYMPTOTIC STABILIZABILITY OF POSITIONS OF RELATIVE EQUILIBRIUM 

OF A SATELLITE - GYROSTAT* 

V.A. ATANASOV 

A theorem proved in /l/ is used to study the possibility of asymptotic stabilization of 
the equilibrium orientations of a satellite-gyrostat using control moments applied to the 
rotors. 

The asymptotic stabilizability of the stationary motions of mechanical systems with 
cyclic coordinates was also discussed in /2/, where the sufficient condition of stability was 
formulated. This, as well as the analogous condition of /l/, follows from the classical 
theory on the sufficient conditions of stabilization /3/. However, in the theorem in /l/ the 
condition in question leads, by virtue of taking into account the specific features of the 
systems with cyclic coordinates, to the study of the rank of a matrix of lower dimensions. 
From this point of view the theorem in /l/ is more suitable for use when studying the 
stabilizability of the stationary motions of specific mechanical systems. 
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